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Abstract: The paper considers a type of radial pentagon-based 
tiling consisting of two shapes: triangle and rectangle. The ob-
tained solution has a spatial interpretation in a 3D arrangement 
of equilateral triangles and squares dictated by the particular 
array of concave cupolae of the second sort, minor type (CC-II-
5.m). These cupolae are arranged so that their decagonal bases 
partly overlap, making a pentagonal pattern (similar to the one 
of the Penrose tiling). Covering the folds between the faces of 
such a polyhedral structure with polygons, we use exactly equi-
lateral triangles and squares, thanks to the trigonometric prop-
erties of CC-II-5.m. Observed in the orthogonal projection onto 
the plane of the polygonal bases, this 3D “covering” is viewed 
as a pentagonal-based radial tiling in the Euclidean plane. 
Equilateral triangles will be projected into congruent isosceles 
triangles corresponding to those obtained by the radial sec-
tion of a regular pentagon in 5 parts. The squares are project-
ed into rectangles whose ratio is: a:b = 1:φ/√(1+φ2), where φ 
is the golden ratio. These triangles and rectangles form a ra-
dial tiling consisting of 5 sectors of the plane, where the pat-
terns of the established tiles are repeated locally periodically. 
However, with 5-fold rotation of the pattern, the tiling itself is 
non-periodic. The various tiling solutions that can be obtained 
in this way may serve as inspiration for the geometric design, 
especially interesting in architecture and applied arts, e.g. for 
rosettes, brise soleils, mosaics, stained glass, fences, partition 
screens and the like.
Keywords: tiling, tile, pentagon, 5-fold symmetry, triangle, rectangle.
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INTRODUCTION

The term “tiling” refers to the tessellation of the Euclidean plane with polygons. 
Polygons must be closed, convergent sections of the plane and connected to each 
other by their sides, without overlaps or gaps. These polygons are otherwise called 
“tiles” and can be regular or irregular. Also, the number of polygonal shapes partic-
ipating in the tiling can be different, from the ones where they are all congruent, 
i.e. where the plane is tiled with one type of tile alone (monohedral), to those where 
more different polygons participate in the tiling (polyhedral). 

The very word “tile” for a polygon and “tiling” for the process of covering a plane 
with such polygons, originates from practical and utility objects, such as ceramic 
tiles. As one of the oldest inventions of mankind, ceramics dates back to pre-Paleo-
lithic times.1 Tiling of surfaces, as part of the finishing works, more precisely interior 
and exterior decorations, according to some sources,2 appears as early as the time 
of the Sumerian civilization, 4000 BC. We meet them in Mesopotamia, Ancient 
Egypt, Ancient Greece and Rome, Byzantium, Japan, China, among the indigenous 
Mesoamericans, and in the Arab world. Some of the iconic legacies of the Antiquity, 
which can be found in any relevant publication concerning the history of architec-
ture and art, are adorned with ceramic tiles: Gate of the goddess Ishtar (ca. 575 BC, 
Babylon), geometric patterns in mosaics of Pompeii (79 AD), or arabesques that we 
encounter in mosques throughout the Islamic world, to mention only some. 

It is understandable that (ceramic) tiles have been so widely used around the 
globe, and in almost all civilizations, due to the diverse possibilities of combining 
shapes and colors and the resulting most diverse decorative patterns, as well as 
due to evident durability and resistance to temperature and physical fractures.3 
Therefore, the practice of tiling surfaces in architecture and applied arts, especially 
in the interior is so common. Let us mention, apart from the most obvious tiling 
of floors and walls, mosaics, inlays and marquetry, also covering of roofs and even 
facades in certain parts of the world (e.g. Portugal). 

Why is the geometric fitting of these tiles important? Not only because of the 
simpler continuation of the tiles to each other, since the geometry of the prototiles 
(shapes of the participating tiles) dictates the way of arranging them, but also be-
cause of the material savings by reducing cuts when the tiles overlap or by filling in 
gaps. Thus, the consumption of tiles is rational. Finally, there is a visual impression 
of rule and order, which one perceives as aesthetic, as opposed to chaotic and dis-
organized. The artistic approach allows more freedom in that, yet it adheres to the 
framework of the general rule.

The problem of geometric tiling is more demanding in terms of respecting the 
strict rules and methods of tilings origination, including also angular alignment, 
vertex figures, combinations of the prototiles, transformations and symmetries.

1   The earliest pottery artifacts date from the period 29.000–25.000 BC, found in the Czech 
Republic, v. P. B. Vandiver et al., “The Origins of Ceramic Technology at DolniVěstonice, 
Czechoslovakia”, Science, 246 (4933), 1989, 1002–1008.

2   C. A. Pickover, The Math Book: From Pythagoras to the 57th Dimension, 250 Milestones 
in the History of Mathematics, Sterling, 2009, 372.

3   Thanks to the greater force required for greater deflection that will cause breaking stress.
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TILING AS A GEOMETRIC PROBLEM 

Tiling of the Euclidean plane, as a geometric problem, is considered to have been set 
by Kepler in his work Harmonices Mundi4 in the early 16th century. Some sources5 
state that geometric dealing with the problem of tiling can be found in the works 
of Papus of Alexandria, 4th century A.D. while Dürer’s works on this subject,6 a 
century earlier, are also well known.

Kepler gave the basis for the theoretical study of tiling and gave a systematic 
approach to the problem, which is still being used as an indispensable source in 
this field. Centuries later, in the 20th century, scientists emerged who continued to 
investigate the geometric problem of tiling in a way that further pushed boundaries. 
Let us mention a few of the most important: M. Goodman-Strauss, M. Ghyka, K, 
Critchlow, B. Grünbaum and G. C. Shepard, D. Chavey, H.S.C. Coxeter, J. H. Conway, 
and R. Penrose. We lack the space to pay tribute to a multitude of others who have 
contributed to the topic, each from their own domain. Actually, the topic can be 
treated in a classical, constructive-geometric way, but in modern science, mathe-
matical approaches are more common, which use discrete geometry, theory of finite 
groups or combinatorics as tools.

When arranging tiles in a compact tiling without gaps, the key is the shape of the 
selected tiles themselves – prototiles. Angular dimensions of the tiles dictate their 
layout. Yet, we can often form several different tilings with the same tiles, so the 
symmetrical relations between the tiles set the conditions for their arrangement. 
If we adopt the rule that tiles are also regular polygons, there are only 3 such tilings 
and they are regular (Platonic). If we allow the use of two different polygonal shapes 
in tiling so that all vertices, i.e. their vertex figures are identical, as is the case with 
the previous ones, we get 8 semi-regular (Archimedean) tilings. According to the 
systematization of Grünbaum and Shepard,7 these are 1-uniform tilings, and conse-
quently there are 2-uniform, or demi-regular, 3-uniform, 4-uniform and k-uniform 
tilings, where the number k denotes the number of different vertex figures. The 
number k can be infinite.8

All of the k-uniform tilings are periodic, which means: formed by translation of the 
fundamental regions into which the initial prototiles are grouped. Unlike them, there 
are also non-periodic tilings, where the translational repetition of the fundamental 
region is disturbed. The tiles and/or fundamental regions are arranged so that the 
whole plane cannot be tiled merely by translating them, although they can locally be 
arranged periodically. In this case, other plane transformations are needed for the 
formation of tiling, so rotational, reflective, radial, displaced radial9 or spiral tilings 

4   J. Kepler, 1619. Harmonices mundi. Libri V, 1619, Reprint Culture et Civilisation, Brux-
elles 1968.

5   D. P. Chavey, “Tilings by Regular Polygons II: A Catalog of Tilings”, Computers & 
Mathematics with Applications, 17 (1–2), 1989, 147–165.

6   A. Dürer, Unterweysung der messungmitdem Zirckel und Richtscheyt, 1st Edition, 1525, 
2nd Edition, 1538, Hieronymus Formschneyder, Nürenberg, cited after A. Peltzer (Ed.), 
Albrecht Dürer’sUnterweisung der Messung, Munich, 1908.

7   B. Grünbaum et S. C. Geoffrey, “Tilings by regular polygons”, Mathematics Magazine 
50 (5), 1977, 227–247. 

8   H. Steinhaus, Mathematical snapshots, Oxford University Press, New York, 1950. D. 
P. Chavey, “Periodic tilings and tilings by regular polygons. I: Bounds on the number 
of orbits of vertices, edges and tiles”, Mitteilungen aus dem Mathematischen Seminar 
Giessen 164, 1984, 37–50.

9   G. Shawcross, “Periodic and Non-Periodic Tiling”, 2012. https://grahamshawcross.
com/2012/10/12/periodic-and-non-periodic-tiling/
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are obtained. If the tiling is such that periodic tiling cannot be obtained even within 
local patches, the tiling is called aperiodic. One of the best known among them is 
Penrose tiling.10 Aperiodic tilings are still among the most challenging geometric 
problems of tiling the plane.

TILE SHAPES AND TILING SYMMETRIES

If we start from the shape of the tiles that can participate in the tiling, we return 
to the regular tilings made up by the congruent tiles. They are tiled by one of the 
following three regular polygons: equilateral triangle, square and regular hexagon. 
Triangular tiling (deltille)11 consists of equilateral triangles, more precisely, 6 of them 
organized around the same vertex. Square tiling (quadrille) consists of congruent 
squares, 4 of them around the same vertex. Hexagonal tiling (hextille) is formed of 3 
hexagons around a common vertex. The interior angles of these polygons multiplied 
by an integer, produce a full circle, 2π, which is not the case with other polygons. 
Moreover, the angular compliance of two different polygons is also a problem due 
to the sum of their interior angles. According to Grünbaum12 and Shepard, there 
are only 5 regular polygons that can tile a whole plane. These are: triangle, square, 
hexagon, octagon and dodecagon, wherein the octagon appears in one case of 
Archimedes’ tiling only. Pentagon is not present in this sequence, since its interior 
angles do not fulfill the above condition.

Periodic tiling can also have rotational symmetry – if the prototiles or the fun-
damental region is rotated by an angle of 2π /n exactly n times. Then we get a pat-
tern, i.e. tiling with n-fold symmetry. For example, an equilateral triangle has 3-fold 
symmetry, but a triangular tiling has 6-fold symmetry, because we have to rotate 
a triangle 6 times by 60o to fill the full circle. A square has 4-fold symmetry and so 
does the square tiling. Hexagon has 6-fold symmetry, but hexagonal tiling has 3-fold 
symmetry, etc. However, although the pentagon itself has 5-fold symmetry, tiling 
that uses solely regular polygons and has 5-fold symmetry does not exist. But are 
there other solutions?

Attempts to solve the 5-fold symmetrical tiling date even before Kepler’s studies. 
A century earlier, Albrecht Dürer gave in his treatise Unterweysung der messung mit 
dem Zirckel und Richtscheyt,13 among other solutions, his periodic and non-periodic 
tilings with pentagons and rhombuses (“diamonds”). In fact, he gave an unfinished 
scheme for radial tiling (Fig. 1a), where we can see “fivefold nucleus, which can be ex-
tended to a multiple twin of fivefold symmetry”.14 Anyhow, his construction of radial 
pentagonal tiling remains the one of the ineluctable solutions of using pentagon in 
tiling the plane, while respecting 5-fold symmetry. Kepler, on the other hand, gives 
his famous solution in Harmonices Mundi, a tiling with decagons, pentagons and 

10   R. Penrose, “The role of aesthetics in pure and applied mathematical research”, Bulletin 
of the Institute of Mathematics and Its Applications10, 1974, 266–271. 

11   J. H. Conway, “The Orbifold Notation for Surface Groups”, In: Groups, Combinatorics 
and Geometry, eds. M. W. Liebecket J. Saxl, ch. 36, Cambridge [England]; New York: 
Cambridge University Press, 1992, 438–447.

12   B. Grünbaum et S. C. Geoffrey, “Tilings by regular polygons”, Mathematics Magazine 
50 (5), 1977, 227–247.  

13   A. Dürer, Unterweysung der messungmitdem Zirckel und Richtscheyt, 1st Edition, 1525, 
2nd Edition, 1538, Hieronymus Formschneyder, Nürenberg, cited after A. Peltzer (Ed.), 
Albrecht Dürer’sUnterweisung der Messung, Munich, 1908.

14   L. Reinhard, “Dürer–Kepler–Penrose, the development of pentagon tilings” Materials 
Science and Engineering A 294, 2000, 263–267.
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fivefold stars, where the decagons partially overlap (Fig. 1b). Kepler named such an 
irregular tile a “monstrum”. Symmetrically, however, this solution satisfies the tiling 
of the entire Euclidean plane. It will turn out to be visionary; not only does it meet 
the geometrical conditions of 5-fold symmetry, but it can also be multiplied in the 
manner of aperiodic tiling.

This problem was not clearly posed and defined until modern times. Aperiodic til-
ings are associated with the conjuncture of Hao Wang,15 which states that “if a set of 
tiles can tile the plane, then they can always be arranged to do so periodically”. His stu-
dent, Robert Berger, refuted this conjecture by proving that aperiodic tilings exist.16 
A number of scientists then tried to determine the minimum number of different 
tiles needed to perform aperiodic tiling using Wangs tiles.17 The solutions ranged 
from 104 tiles, given by Berger himself, to one given by Raphael M. Robinson18 with 
6 of them. Finally, Roger Penrose19 reduces this number to two. Penrose gave his 
solutions with aperiodic tilings that give 5-fold symmetry, named after him: Penrose 
tilings, and the tiles used are named Penrose tiles. There is an infinite number of 
arrangements of these tiles that give Penrose tilings with local 5-fold symmetry, but 
only two of them are really 5-fold.20 In all these solutions, we will see that the search 
for solutions with regular polygons has been abandoned, while other shapes that 
satisfy the conditions of symmetry and aperiodicity are allowed.

There are three basic types of Penrose tilings, according to the shape of the tiles. 
a) P1: original Penrose tiling consisting of four different shapes: pentagon, five 

point star, “boat” and “diamond” (Fig. 1c). 
b) P2: with two tile shapes: “kite” and “dart”.
c) P3: with two shapes, “thin” and “thick” rhombus (v. Fig. 3c)
What is interesting is that Penrose tiling and Kepler’s tiling (Fig. 1d) are strong-

ly related,21 i.e. that we can overlap them and notice the appearance of the same 
decagons, pentagons, five pointed stars and “monstrum” polygons on both tilings. 

15   H. Wang, “Proving Theorems by Pattern Recognition II,” Bell Systems Technical Jour-
nal 40, 1961, 1–41.

16   R. Berger, “The Undecidability of the Domino Problem,” Memoirs of the American 
Mathematical Society 66, 1966, 1–72.

17   Wang’s tiles are square tiles, diagonally subdivided into 4 sections, each colored by one 
of the colors from the set. 

18   R. M. Robinson, “Undecidability and Nonperiodicity for Tilings of the Plane,” Inventio-
nesMathematicae 12 (3), 1971, 177–209. 

19   R. Penrose, “The role of aesthetics in pure and applied mathematical research”, Bulletin 
of the Institute of Mathematics and Its Applications 10, 1974, 266–271

20   Data found in more different sources, and rely on the process of deflation.
21   L. Reinhard, “Dürer–Kepler–Penrose, the development of pentagon tilings”, Materials 

Science and Engineering A 294, 2000, 263–267.

Fig. 1
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Also, the connection of Penrose tiling with quasicrystals need to be mentioned, 
as a 3D counterpart of the 2D tiling problem, which is close to the logic of the pro-
cedure that we present in this study. 

The solution we provide, guided by the aforementioned knowledge, offers a 
non-periodic, radial tiling solution with 5-fold symmetry of the plane sector (region) 
with the central angle of 72o, consisting of a periodic arrangement of two shapes: 
a rectangle and an isosceles triangle. The inspiration for our research came from a 
spatial problem – 3D array of a specific group of polyhedral surfaces: CC-II-5m, so 
we also provide a spatial interpretation of the presented tiling.

METHOD AND LOGIC OF THE PROCEDURE

In this paper, we used the methods of descriptive geometry (orthogonal projection), 
2D transformations, trigonometry and CAD. Although these problems are nowa-
days solved by algorithms and procedural graphics, the classical method – the one 
used by Dürer and Kepler still works well. Aided by precisely generated polygons via 
graphics software, construction and precision are no longer a problem. Furthermore, 
this method allows a greater author’sinfluence on the solution, including creativity, 
artistic twistsand atypical geometric solutions. 

SPATIAL UNDERLAY OF THE PROPOSED RADIAL 5-FOLD TILING SOLUTION

To explain the origin of the solution given in this paper, we will refer to one specific 
group of polyhedral surfaces – concave cupolae of the second sort, because by using 
their geometry we came to the findings in this research. 

Concave cupolae of the second sort22 (abbr. CC-II-n) are polyhedra which, analo-
gous to convex, Johnson cupolae23 (J3, J4 and J5), have {n} and {2n} regular polygons 
as their bases in parallel planes. In the lateral surface, however, they are connected 
by equilateral triangles, diverse from Johnson solids where triangles and squares 
alternate. The arrangement of these triangles is such that they are set in two rows, 
forming n spatial open hexahedral cells. Arranged by a polar array so to fill a full 
circle, they give a concave lateral surface. Therefore, since all faces of the obtained 
polyhedral surface are regular polygons, all the edges are of equal length, a.

Unlike the convex cupolae with only three representatives, there are as many as 
1324 of the CC-II-ns. They can be obtained with any regular polygon in the range 
from {4} to {10} as a starting base. Also, they can be formed in two varieties depend-
ing on the way their planar net is folded: major, with greater height (CC-II-n.M) and 
minor, with lesser (CC-II-n.m). Of these 7 bases and 2 possible types for each CC-II-n, 
we exclude CC-II-10.m whose lateral vertices penetrate the icosagonal base. The 
properties of the geometry of these solids are described in detail in the dissertation 
“Constructive – Geometric Elaboration of Toroidal Deltahedra with Regular Polygonal 
Base” (Konstruktivno – geometrijska obrada toroidnih deltaedara sa pravilnom poli-

22   M. Obradović et S. Mišić, “Concave Regular Faced Cupolae of Second Sort”, In: Proceed-
ings of 13th ICGG, Dresden, August 2008, ed. G. Weiss, El. Book, Dresden, 2008, 1–10.

23   N. W. Johnson, Convex Solids with Regular Faces. Canadian Journal of mathematics 18 
(1), 1966, 169–200. 

24   In the number of earlier papers by the same authors, the number 14 is mentioned, but 
it refers to the possibility of forming a lateral surface in all 14 representatives, so that 
the possibility of elongated CC-II-10.m is allowed, although this one cannot exist with 
a surface surrounding continuous space in its basic form.
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gonalnom osnovom)25 by M. Obradović (2006), although they are not considered 
as individual solids there, but as part of the outer deltahedral surface of the toroidal 
deltahedra. They are introduced as independent solids in the paper26 by the same 
authors in 2008. One of these solids, a pentagonal concave cupola of the second 
sort, minor type (CC-II-5.m hereinafter) served as the basis for this study (Fig. 2). 

The connection between CC-II-n and Euclidean tiling was considered in one of the 
earlier studies by the same author,27 where the ways of subdividing the triangular 
faces of the CC-II-n’s lateral surface into triangles and hexagons were examined. 
Further research into the possibility of applying such tilings in the context of archi-
tectural design28 led to some suggestions on the introduction of colors and different 
materials for these purposes. This paper goes a step beyond and instead of dividing 
the faces (subdivision method, and consequently substitution tiling), we now give a 
proposal for tiling by projecting a 3D polyhedral structure onto a 2D plane, similar 
to the “cut and project” method.

25   M. Obradović, Konstruktivno-geometrijska obrada toroidnih deltaedara sa pravilnom 
poligonalnom osnovom, Constructive-geometrical elaboration on toroidal deltahedra 
with regular polygonal bases (PhD thesis), University of Belgrade, Faculty of Archi-
tecture, 2006.

26   M. Obradović et S. Mišić, “Concave Regular Faced Cupolae of Second Sort”, In: Proceed-
ings of 13th ICGG, Dresden, August 2008, ed. G. Weiss, El. Book, Dresden, 2008, 1–10.

27   M. Obradović, “Tiling the Lateral Surface of the Concave Cupolae of the Second Sort”, 
Nexus Network Journal 21/1, 2019, 59–77.

28   M. Obradovic, “Geometric Redesign of the Subdivided Surface of CC II: Applica-
tion in Architecture”, Journal of Industrial Design and Engineering Graphics 14, no. 
1 (2019): 79–84.

Fig. 2
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DESCRIPTION OF THE PROCEDURE

If we adopt two CC-II-5.ms, translationally shifted so their bases are coplanar and 
their decagonal bases overlap sharing exactly two common vertices, the central 
vertices G1 and G2 of their open hexahedral cells touch, forming a common vertex G 
(Fig. 3a). This is easily trigonometrically provable on the basis of linear and angular 
parameters CC-II-5.m, which can be seen in: Obradović, 2006.29 The overlapping 
areas of the decagon form precisely the Penrose tile: thin rhombus.

We then adopted a grid of decagons connected to each other by a common edge in 
concentric pentagonal “rings”, as in Fig. 3b, so that the decagons from the adjacent 
rings overlap in the described manner. This grid outlines the regular pentagon. It 
can also be seen locally in Penrose tiling, but more broadly, it will not be respected 
the further we move away from the centroid C of the central five-pointed star (Fig. 
3c). In fact, Penrose tiles, “thick” and “thin” rhombus, can fit into this grid, albeit pre-
cisely in every second “ring”, while those in between are partially trimmed (Fig. 3d). 
Five “thick rhombuses” form a new 5-pointed star prototile, translated in triangular 
number sequence within a section of 72o. The gaps are filled with “thin rhombuses”. 
Followed by rotational symmetry, a radial tiling is obtained.

Now, we place the CC-II-5.ms’ decagonal bases onto the decagons in the grid (Fig. 
3e). The lateral surfaces of CC-II-5.ms within the same “ring” share the edges of the 
lower base, while the faces overlap with the ones in the adjacent rings. In this way, 
we get a complex polyhedral structure. Observed from the exterior – a composite, 
corrugated polyhedral surface (Fig. 3e). Instead of all regular faces, as is the case 
with CC-II-5.m, there will appear irregular polygons, obtained by the intersection 
of lateral faces in the lower row (closer to the decagonal base). To solve this, we will 
cover the deep folds between two adjacent cupolae with new polygons.

29   M. Obradović, Konstruktivno – geometrijska obrada toroidnih deltaedara sa pravil-
nom poligonalnom osnovom / Constructive – geometrical elaboration on toroidal del-
tahedra with regular polygonal bases (PhD thesis), University of Belgrade, Faculty of 
Architecture, 2006, 333, 399 and 400.

Fig. 3
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When we connect the two nearest vertices, A1 and A2 of the upper bases of the 
two adjacent CC-II-5.ms, we get a horizontal line segment (since both vertices are 
at the same height) whose length d exactly equals to the edge a of the cupola itself 
(Fig. 3a). This results from the geometry of the CC-II-5.m, and its linear and angular 
parameters.30 If the distance
 d = a = A1A2  (1)

then the edges A1G and A2G of the adjacent CC-II-5.m that share the common vertex 
G, together with the edge d form an equilateral triangle A1GA2. On the other hand, 
the two other lateral edges connecting the observed vertices A1 and A2 with the 
succeeding vertices G3 and G4 of the adjacent CC-II-5.m from the same ring, will be 
parallel. This also results from the trigonometric properties of CC-II-5.m implying 
that the distance f between the vertices G3 and G4 is also equal to a. 

 f = a = G3G4  (2)

The vertices A1 and A2 with the vertices G3 and G4 define the sides of the quadri-
lateral which are equal to a, while their all angles are right, which can also be easily 
proved trigonometrically. 

This will be confirmed through the orthogonal projection of the newly created 3D 
polyhedral surface that covers the folds between the adjacent faces of the CC-II-5.
ms, as explained below.

Thus, when we connect all the corresponding vertices of the CC-II-5.ms by the 
congruent line segments a and thus define polygonal faces of the new surface, we 
get a 3D covering, i.e. polyhedral surface consisting exclusively of regular polygons: 
triangles, squares and inherited pentagons of the upper bases. To reduce these 
three shapes to two, we will convert all the pentagons into a set of five equilateral 
triangles. We can place them above the pentagons, for augmentations, or beneath 
them, for incavations of the cupolae. Whichever position we choose, it will not affect 
the orthogonal projection, i.e. 2D tiling, as either way the pentagonal pyramids will 
be projected into an identical image. (Fig. 3f). It will only affect the appearance of 
the 3D covering. 

This kind of surface can spread to infinity.

PROJECTION OF 3D COVERING AND FORMATION OF TILING

To get a Euclidean tiling, which means an arrangement of tiles that are all coplanar, 
we project the previously described 3D covering consisting of equilateral triangles 
and squares as faces, orthogonally onto the plane of CC-II-5.ms’ bases. As a result, 
we get a tiling whose local region, with the center in the vertex C, has the shape of a 
regular pentagon, while the rows of tiles are strung radially in relation to the center 
C. Its prototiles are projections of the faces of the 3D covering (Fig. 4a). Each equi-
lateral triangle is projected into an isosceles triangle of base side a and legs b, while 
the square will be projected into a rectangle of the same sides. (Fig. 4b). The ratio 
of these sides’ lengths can be easily found using the projections of triangles – the 

30   We do not give trigonometric proof in this paper, because it is elementary. It follows 
from the data given in the source mentioned in the footnote No. 25: that the dis-
tance from the projection G’ of the vertex G to the edge of the upper base is equal 
to 0.688191, which was obtained algorithmically, by an iterative method. This exactly 
equals to the value of the radius of the circle inscribed in the regular pentagon, r=a/2t-
g36o=0.688191. The further is easily provable.
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lateral faces of regular-faced pentagonal pyramids by which we augment (or inca-
vate) pentagonal bases of CC-II-5.ms. These equilateral triangles are all projected 
into congruent isosceles triangles corresponding to those obtained by the division 
of a regular pentagon into 5 segments, with a common central vertex C in the cen-
troid of the pentagon (Fig. 4a). If a is the edge of CC-II-5.m parallel to the projection 
plane, we see it in the orthogonal projection as the side a of the tiling, undeformed 
in length. Thereby, as deformed, we see the one inclined towards the projection 
plane. Its projected length corresponds to the side b. The ratio of these sides is:

 a: b = 1: 0.85065 (3)

 b = 
φ

√1+ φ2  (4)

where φ is the golden ratio.
In the projection, these tiles are arranged so to form 5 different vertex figures 

(actually 7, but two of them are chiral) which are repeated by translation. We also 
notice that the initial prototiles are grouped into several new shapes. These are: 

• 5-pointed star, obtained as an elevated pentagon (for simplicity, we named it a 
“star”);

• elongated diamond (for simplicity, we named it a “diamond“), formed of two 
reflexive triangles, between which the rectangle is placed (Fig. 4c). 

Fig. 4
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These shapes always appear in a full form, so they can be adopted as new proto-
tiles whose all sides are b. Further, the “star” and the “diamond” fit together into a 
new shape which can be used as a single tile to perform the tiling. In this case, the 
exception of a single pentagonal patch that is the central “star” prototile, keeps this 
tiling from being monohedral. This shape also has all the contour sides of the length 
b, which enables it to fit with the abovementioned prototiles (Fig. 4d). Interestingly, 
the same contour is discovered in studies of quasicrystals. A group of Chinese au-
thors in their study from 201731 named this shape “shield-like”, but it was not con-
nected with a division into triangles and rectangles. In our study, we named this 
shape “pineapple“ because when dissected into smaller tiles, it resembles a stylized 
depiction of this fruit.

The “pineapple” shape can actually play a role of the fundamental region, in the 
periodic tiling solution, but this would be the subject of another research study. This 
shape can always be “broken” into simpler initial shapes.

DESCRIPTIVE-GEOMETRIC PROOF OF THE 
3D COVERING FACES REGULARITY

We have previously explained that the distance between vertices A1 and A2 of the 
CC-II-5.ms in adjacent rings is equal to a, but the question remains: what are the 
distances between vertices of the adjacent CC-II-5.ms within the same ring? In re-
verse steps, from the 2D projection, i.e. tiling, back to the 3D covering, we will clarify 
this as well.

Let us tile the whole plane with the triangular and rectangular tiles as explained 
(v. Fig. 4a), and confirm that there are no gaps or overlaps. We see that only two 
line lengths appear in this tiling: a and b. Knowing that they originated as orthog-
onal projections of edges from a 3D corrugated polyhedral surface, we will ask the 
question of their lengths in space and are they all equal. We start from the height 
differences (Δh) of these lines’ extreme vertices. The edges of the length a are all 
horizontal, and their Δh = 0. Knowing that the edge length of the CC-II-5.m itself 
is seen in its real size a, in the basic pentagon (e.g. A1A1), then all the lines a in the 
tiling represent the horizontal line of the same length a, in space. Thus, isosceles 
triangles with base a and legs b actually represent equilateral triangles in space, 
rotated around the side a.

The lines of length b also have all equal height differences Δh = hA-hG. Since for 
some of them, which are the edges of CC-II-5.ms, we know for sure that their length 
is a, it follows that all other edges seen as b actually are of the length a in space. 
The right angles of the rectangle are formed by the sides a and b, where a is seen 
in the real size. If one of the legs is seen in its real size, this is a sufficient condition 
for a right angle to be projected undeformed, so the rectangle’s angles represent 
undeformed right angles in space. This means that the rectangle, in fact, is a pro-
jected square.

With this, we confirm that all the line segments that connect vertices A and G of 
the adjacent cupolae, mutually or crosswise, are equal and of the length a. Thereby 
the right angles are seen as undeformed and thus it follows that 3D corrugated 
covering consists only of equilateral triangles and squares.

Some other tilings ideas using the same tiles

31   Li, H et al., “Shield-like tile and its application to the decagonal quasicrystal-related 
structures in Al-Cr-Fe-Si alloys”, Journal of Alloys and Compounds 701, 2017, 494–498.
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As with Penrose tilings, but also with many k-uniform ones, a single set of pro-
totiles can form multiple different solutions. In the case of Penrose tiling, there is 
an infinite number of them. Since the geometry of pentagon is the basis of both 
Penrose tiling and the tiling given in this study, given that the adopted decagonal 
grid can also comprise Penrose tiles, it is expected that the proposed triangular and 
rectangular set of tiles can also provide an infinite number of solutions, some of 
which may be aperiodic. However, the exact substantiation of this conjecture and 
possible evidence awaits some future research. 

In this paper, we will inspect only a few more solutions that have the central point 
– the vertex C in common, together with the property to spread radially from this 
point to infinity. 

In Fig. 5a, we see the possible positions of “pineapple” tiles in a tiling. Tiles in which 
the “star” prototile is placed with the vertex point on its vertical axis of symmetry 
“down”, are designated by capital letters: A, B, C, D and E and we denoted them as 
Group I. They differ in the rotation angle, so that each is rotated by 72o compared to 
the previous one. Tiles in which the “star” prototile is placed with the point on the 
vertical axis “up”, rotated by 36o in relation to the previous cases, are designated by 
lowercase letters: a, b, c, d and e. We denoted them as Group II. 

Figure 5b shows the stages of forming a radial tiling where 5 tiles of Group II: 
a, b, c, d, and e are set in the first “ring” around the central “star” prototile. In the 
second ring, 10 of these tiles are arranged in the order: d, d, e, e, a, a, b, b, c, c. 
When placed over the first ring with a common center C, the “star” tiles of both 
rings overlap32 and coincide. In the third ring, 15 tiles of Group I alternate in the 
order: C, D, C, D, E, D, E, A, E, A, B, A, B, C, B. In the fourth ring, the 20 tiles of 
Group I alternate in order: C, C, D, C, D, D, E, D, E, E, A, E, A, A, B, A, B, B, C, B. 
The following rings translationally repeat the order of the tiles of Group I from 
the previous two rows. 

32   We allow this overlapping because it produces the exact match of the smaller proto-
tiles (“diamonds”, triangles and rectangles, edge to edge) so that we can ignore the ini-
tial “pineaple” tile as fundamental region, since it only helped us in the organization of 
the tiles. Then we observe the resulting tiling as composed of triangles and rectangles.

Fig. 5
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When these rings are laid together with the common center C, the result is tiling 
which looks very similar to the one originally presented (Fig. 4a), when we observe 
the solution with triangular and rectangular tiles, but in fact, their composition is 
more complex, as we see in Fig. 4c. There is a “twist” with 10 tiles of the Group II in 
the central region, and there is also one more “twisted”, i.e. rotated row of tiles in 
each of the five sectors of the tiling.

Figure 5d shows another tiling formed by a combination of tiles from Groups I and 
II. The first ring, with the “star” prototile in the center is identical to the first ring 
from the previous example, with the tiles: a, b, c, d, e. The second ring comprises 
alternating tiles of both Groups I and II: A, c, B, d, C, e, D, a, E, b. In the third ring 
they are set in the arrangement: A, c, B, d, C, e, D, a, E, b, and then in the fourth ring 
the order of the tiles is: A, E, d, B, A, e, C, B, a, D, C, b, E, D, c. In the fifth, sixth and 
subsequent “rings”, the tiles of Group I and II also alternate. The gaps in between 
are filled with “diamond” tiles, which enables the fulfilment of the first tessellation 
rule: no gaps or overlaps, and the tiles are aligned edge to edge, but now it refers to 
the smaller prototiles: “star”, “diamond”, triangle and rectangle. 

We can observe the grouping of tiles that build different figures, and in the final 
tiling we will notice lines, formed by “diamond” tiles, which create interesting geo-
metric patterns over this tiling (Fig. 5e). 

In addition to these examples, we will give 3 more simple variations. As we could 
see, “diamond” tiles have such a geometry that they contain both triangles and 
rectangles, so that they can independently form a tiling, without the participation 
of “star” prototiles. Such a tiling is shown in Fig. 6a. It is a radial tiling consisting of 
10 identical sectors made up of a series of “diamond” tiles, which are arranged in the 
observed sector periodically. They are connected to each other in triangular number 
sequence. Two such sectors are adjoined by the edges and corresponding angles, 
wherein one is rotated by 36o and shifted by length b. This pair is then multiplied 
by rotational 5-point symmetry around the vertex of the first, protruding triangle, 
until the full circle is closed. Thus we get a radial tiling composed of the very same 
starting triangles and rectangles.

These sectors of locally periodic “diamond” tilings can be combined with “pine-
apple” tiles, so that they create other radial tilings composed of initially defined 
prototiles. As shown in Fig. 6b, in one such example, the “pineapple” tiles form 
stripes through the middle of the five sectors supplemented by diamonds, creating 
new radial tiling. In Fig. 6c we see the case of tiling which occurs when we shift the 
“pineapple” strip from the previous example by one “diamond” tile to the left. Then 

Fig. 6
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we get “displaced” radial tiling, actually a rotational tiling with the center of rotation 
set also in point C. Now, pineapple tiles do not run along the directions that pass 
through the center of tiling, but pass by it. Obviously, all these tilings can go on 
indefinitely with a clear scheme of further sequence.

We also show some visually interesting solutions that share the same feature with 
the ones presented above: the central point from which the tiles radially spread. 
Fig. 7a shows the solution where “pineapple” tiles are connected without overlaps 
or gaps that need to be filled with “diamond” tiles. “Pineapple” tiles from the same 
group alternate in different rings around the central decagonal tile, the only “alien” 
tile between the “pineapples”. Thus, the rings with tiles from Group I are shown in 
gray, while the tiles from Group II are shown in cyan. The tiles can be arranged in 
single, double, triple and n-fold rings, so this tiling can also be called “concentric”. 
Such a feature gives potential in creating different design solutions. 

The following example, given in Fig. 7b, we named “windmill” tiling, because the tiles 
from Group II are grouped into locally periodic regions resembling windmill blades.

The solution shown in Fig. 7c, resembles the solution from Fig. 6c, but with the 
rows of “diamond” tiles replaced by “pineapple” ones of Group I, while the first ring 
consists of “pineapple” tiles of Group II. However, it is actually the same solution as 
in Fig. 5e except that the rows of “pineapples” are now highlighted in color, so that 
they can be seen as stripes connected to the “lumps” of the core.

Certainly, the possibilities of forming multitude of such tiling, from periodic, 
through generative, non-periodic, and even aperiodic, are not exhausted by this 
and it will be the subject of further research.

APPLICATION OF THE PRESENTED TILINGS IN 
ARCHITECTURE AND APPLIED ART

Geometric shapes, as an inherent stamp of intelligent conception, are found both 
in decoration and design of human settlements and utility objects from the begin-
nings of civilization. This is evidenced by the earliest artifacts of the Prehistoric 
Period, through the primitive cultures of Africa and Australia, historical remains 
of lost civilizations and the existing ones, to the current artistic and architectural 
trends. Among them, regular polygons occupy a special place, not only as shapes 
of tiles for covering surfaces, but also as shapes of the ground planes of buildings 
and even of entire cities. From the ideas of the “ideal city”, dating back to Plato and 
his “Republic”, through the utopian cities of the Renaissance and the works of Leon 

Fig. 1
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Battista Alberti33 (1404–1472), to military engineers such as Sébastien Le Prestre 
de Vauban (1633–1707) in Early Modern Period, who used a matrix of regular poly-
gons to create invincible military fortifications,34 regular polygons, as forms of “ideal 
geometry”, have permeated architectural achievements to this day. We conclude 
that regular polygons, with their multiple symmetries, are immanent to the human 
experience of aesthetics, since we also find them in biomorphic structures such as 
flowers, honeycombs or crystals, which we associate with beautiful, pleasant or 
precious. Therefore, the regular pentagon, as one of them, served as an inspiring 
basic shape whose tiling we solve in this study. Two more regular polygons, equilat-
eral triangle and square, appear in the 3D covering as faces that build a corrugated 
polyhedral surface. Choosing the regular polygons in design, we get a kind of artistic 
verification, as these forms are perceived as attractive and orderly.

The pentagon, as a geometrically fascinating shape with its 5-fold symmetry, be-
comes especially challenging when it comes to fitting with the rectangular matrix 
of the space we are used to, so it still represents a puzzle for both designers and 
contractors. That is why the solutions that enable its mastering, whether they con-
cern tilings of surfaces or ideas for its division into simpler shapes are always use-
ful. Penrose tiling is evidently one of them, but with its non-standard shape of the 
tiles, whether it be “thick” and “thin” rhombuses or “kites” and “darts”, it requires 
knowledge and obeying the tiling rules. This implies an educated and very spatially 
intelligent craftsman, which is not always attainable. 

In the solutions we present here, there are only two types of tiles: a rectangle – 
a shape easy to produce, cut and pack, and an isosceles triangle, another simple 
shape that can be easily cut and packed. On the site, they can be assembled into 
larger prototiles: “stars”, “diamonds” or “pineapples”, so their further arrangement 
is much easier.

33   L. B. Alberti, De re aedificatoria. On the art of building in ten books, translated by J. 
Rykwert, R. Tavernor and N. Leach, Cambridge, Massachusetts: MIT Press, 1988.

34   M. Obradović et S. Mišić, “Are Vauban’s Geometrical Principles Applied in the Petrova-
radin Fortress?”, Nexus Network Journal 16/3, 2014, 751–776.

Fig. 8
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Different arranging combinations of these tiles can provide a variety of solutions, 
from geometric to free-form, as in the classic mosaic. On the other hand, even if 
we observe a geometrically determined solution, the possibilities of various design 
interventions are practically unlimited. By applying different colors or materials, 
different patterns can be obtained, geometric or not, including even figuration. 

We give several ideas for geometric (re)design of tiled pentagonal bases, according 
to the solutions given in the previous part of the paper.

1. By omitting some of the tiles (triangular, rectangular, or selected groups or re-
gions) as in the solutions shown in Fig. 8a, we can get a new, hollow lattice 
structure that can be applied as brise soleil, room dividers, fences, pergolas or 
even rosettes in a modern interpretation of this classical, recognizable detail 
in sacral architecture. 

2. By applying different colors, we can create patterns that can be used as dec-
orative solutions for paving floors, walls, or as stained glass design (Fig. 8b). 

3. The 3D corrugated polyhedral surface from which we started, also can be ap-
plied in various ways, e.g. in exterior, as a decorative facade cladding, or in the 
interior, as an acoustic cloud or wall panels. Also here, color intervention can 
give interesting design solutions (Fig. 9).

These proposals do not exhaust all the possibilities and ideas that can expand the 
creative approach to the application of tiling in architecture and applied arts. Let us 
remember the artist EmEmEm,35 who makes “flacking” of cracks in the sidewalks, 
roadsides and walls on the streets of Lyon with a colorful mosaic. Artistic imagina-
tion and creativity will always find a way and a means to express the mselves, making 
our micro and macro spaces more pleasant and well-ordered places to live.

CONCLUSIONS

Starting with the problem of tiling the Euclidean plane with 5-fold symmetry, we 
have given a pentagon-based radial tiling solution that uses only two tiles: an isos-
celes triangle and a rectangle of sides a and b. We also presented several variations 
of the tiling. The starting point was the geometry of concave cupolae of the second 
sort of minor type, with the pentagonal base (CC-II-5.m). We proved that 3D cover-
ing composed of squares and equilateral triangles exactly fits the structure of the 

35   N. Meek, “The French pavement street artist Ememem from Lyon going viral in York-
shire”, The Press, 19/04/2021. https://www.yorkpress.co.uk/news/19244057.french-
pavement-street-artist-lyon-going-viral-yorkshire/

Fig. 9
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CC-II-5.ms arranged into concentric decagonal rings. By projecting the resulting 3D 
covering onto the base plane of the CC-II-5.ms, we obtain 2D tiling with the center at 
the centroid C of the central pentagon of the initial polyhedral structure. It is a radial 
tiling with a locally periodic array of tiles, obtained by the rotational 5-fold symme-
try. Tiles that participate in this tiling can be grouped into new prototiles: “star”, 
“diamond” or “pineapple”. With these tiles also, we can then cover the Euclidean 
plain without gaps or overlaps. There is a solution where only “diamond” tiles can 
be used for tiling. Similarly, the 2D solution given as a projection of 3D covering, 
can be obtained by applying the “pineapple” tile alone, with the single exception of 
the central “star” tile. Using these prototiles, we can create unlimited number of 
tilings, as with Penrose tiling.

This way of tiling gives us an advantage in covering pentagonal bases over Penrose 
tiling pattern in the sense that it is easier to perform, and that the tiles themselves 
are easier for production, cutting and packaging. Therefore their eventual applica-
tion is simpler. Pentagonal bases and ground planes are still a challenge for tiling 
with the fewer shapes of tiles and as simple to produce and perform as possible. 
Hence, finding new solutions is still the goal to strive for. Further research will cer-
tainly go in the direction of examining other possibilities of tiling with these tiles: 
from periodic to aperiodic. 
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ILLUSTRATIONS

Fig. 1: Pentagonal tilings and 5-fold symmetrical patterns: Dürer, Kepler and Penrose.
Пентагонало поплочавање и 5-тоструко симетрични обрасци: Дирер, Кеплер, Пенроуз.
Fig. 2: Cupolae with the pentagonal base: J5 and CC-II-5.m
Куполе са пентагоналним базисом: J5 и CC-II-5.m
3: The process of creating a 3D “covering” formed on the basis of the CC-II-5.m’s geometry - 
Illustration under c was made based on: Wikimedia Commons, File: Penrose Tiling (Rhombi), author: 
Inductiveload
Поступак настанка 3Д  прекривача формираног на основу геометрије CC-II-5.m
Илустрација под c је рађена на основу: Wikimedia Commons, File: Penrose Tiling (Rhombi), 
author: Inductiveload
4: Tiling obtained as an orthogonal projection of the 3D “covering” and the tiles that constitute it
Поплочавање настало као ортогонална пројекција 3Д прекривача и плочице које га чине
5: Procedure for forming tilings using “pineapple” tiles 
Поступак формирања поплочавања коришћењем „ананас“ плочица
6: Tiling solutions based on “diamond” and “pineapple” tiles
Решења поплочавања базирана на „дијамант“ и „ананас“ плочицама
7: Solutions based on "diamond" and "pineapple" tiles with color interventions
Решења уз интервенцију бојом базирана на „дијамант“ и „ананас“ плочицама
8: Tiling solutions with omission or repainting of certain tiles
Решења поплочавања са изостављањем или пребојавањем одређених плочица
9: 3D cover and several solutions with color intervention
3Д прекривач и неколико решења са интервенцијом бојама
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ABBREVIATIONS

CC-II-n – concave cupola of the second sort
CC-II-n.M – concave cupola of the second sort, major type 
CC-II-n.m – concave cupola of the second sort, minor type 
CC-II-5.m – concave cupola of the second sort, minor type 
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Марија Ђ. ОБРАДОВИЋ, Слободан Ж. МИШИЋ
РАДИЈАЛНO ПОПЛОЧАВАЊЕ ТРОУГЛОВИМА И ПРАВОУГАОНИЦИМА 
ЗАСНОВАНО НА ПЕНТАГОНУ И ЊЕГОВА ПРОСТОРНА ТУМАЧЕЊА

Резиме: У овом раду дато је решење радијалног поплочавања петоугаоне основе помоћу тро-
углова и правоугаоника. Ово решење има просторну интерпретацију у 3Д распореду једнако-
страничних труглова и квадрата који чине просторни наборани „прекривач“ и прате петоугаону 
шему. Њихов распоред је диктиран положајем десетоугаоника који се делимично преклапају, 
пратећи распоред концентричних петоугаоних прстенова. У простору, десетоугаоници предста-
вљају основе петоугаоних конкавних купола друге врсте, нижег типа (CC-II-5.m). Прекривајући 
наборе између страна такве полиедарске структуре полигонима, користимо једнакостраничне 
троуглове и квадрате, захваљујући тригонометријским својствима CC-II-5.m. Пројектовани на ра-
ван базиса CC-II-5.m они формирају 3Д поплочавање које се радијално шири у простору, почев-
ши од централне тачке С пентагона унутар саме почетне петоугаоне основе. Једнакостранични 
труглови се сви пројектују у подударне једнакокраке труглове који одговарају онима које доби-
јамо радијалном секцијом правилног петоугла на 5 делова. Квадрати се пројектују у правоуга-
онике. Однос страница и троуглова и правоугаоника износи: a:b= 0,85065:1 или: , где је златни 
однос. Ови троуглови и правоугаоници чине радијално поплочавање које се састоји од 5 сек-
тора где се утврђени обрасци уклапања плочица периодично понављају локално, мада је само 
поплочавање не-периодично. Ово једноставно решење није једино које можемо извести тим 
истим равним ликовима. Неколико других решења дајемо у раду. Формирање шара и арабе-
ски оваквим радијалним поплочавањем посебно је занимљиво у пољу примењених уметности. 
Добијени обрасци могу се користити у дизајну розета, брисолеја, мозаика, витража, ограда, пре-
градних паравана и слично.
Кључне речи: поплочавање, петоугао, петострука симетрија, троугао, правоугаоник.


